If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2-31f+10=0
a = 3; b = -31; c = +10;
Δ = b2-4ac
Δ = -312-4·3·10
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-29}{2*3}=\frac{2}{6} =1/3 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+29}{2*3}=\frac{60}{6} =10 $
| 3y+6=54-4 | | 53+x-1/125=0 | | 60=125d | | 3-5n=-3n-1 | | 2(5y–3)=34 | | 11.21=x-3.14 | | 3n−1=8n= | | v(4)=4(40-8)(30-12) | | 9v^2+v-3=0 | | f-1(5)=3 | | 25x+250x=250 | | 3x^2-12=-20 | | 5(-6+k)-2(-3k+1)=-65 | | 3x-4(x-2)=(5+4x) | | 3x-1/2+x/3=5 | | ((x-3)+4)4=((x-6)+5)5 | | 8j-11=61 | | f1(5)=3 | | 2x-4(x-3)=-4+5x | | 25x+250x=4 | | 2x-4(x-3=-4+5x-5 | | -6+-2x=-12 | | 1+2=r | | 3(-7x+4)+4(-5+8x)=-63 | | n/8+1/2=-7/2 | | 2y+5=-15 | | 6/n=114 | | 15n=-19n | | 0.28m=49 | | x*x=(12+4)4 | | 4(x+9)=95 | | 4x-5=-3x-10= |